Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.602
Filtrar
1.
PLoS Pathog ; 19(12): e1011885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117848

RESUMO

Small RNAs act as fungal pathogen effectors that silence host target genes to promote infection, a virulence mechanism termed cross-kingdom RNA interference (RNAi). The essential pathogen factors of cross-kingdom small RNA production are largely unknown. We here characterized the RNA-dependent RNA polymerase (RDR)1 in the fungal plant pathogen Botrytis cinerea that is required for pathogenicity and cross-kingdom RNAi. B. cinerea bcrdr1 knockout (ko) mutants exhibited reduced pathogenicity and loss of cross-kingdom small RNAs. We developed a "switch-on" GFP reporter to study cross-kingdom RNAi in real-time within the living plant tissue which highlighted that bcrdr1 ko mutants were compromised in cross-kingdom RNAi. Moreover, blocking seven pathogen cross-kingdom small RNAs by expressing a short-tandem target mimic RNA in transgenic Arabidopsis thaliana led to reduced infection levels of the fungal pathogen B. cinerea and the oomycete pathogen Hyaloperonospora arabidopsidis. These results demonstrate that cross-kingdom RNAi is significant to promote host infection and making pathogen small RNAs an effective target for crop protection.


Assuntos
Arabidopsis , RNA Polimerase Dependente de RNA , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Virulência/genética , Plantas/genética , Botrytis/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , RNA Fúngico/genética , RNA de Plantas
2.
Pestic Biochem Physiol ; 196: 105599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945247

RESUMO

Despite the increasing number of fungal microRNA-like small RNAs (milRNAs) being identified and reported, profiling of milRNAs in biocontrol fungi and their roles in the mycoparasitism of pathogenic fungi remains limited. Therefore, in this study, we constructed a GFP fluorescence strain to evaluate the critical period of mycoparasitism in the interaction system between T. breve T069 and B. cinerea. The results showed that the early stage of Trichoderma mycoparasitism occurred 12 h after hyphal contact and was characterized by hyphal parallelism, whereas the middle stage lasted 36 h was characterized by wrapping. The late stage of mycoparasitism occurred at 72 h was characterized by the degradation of B. cinerea mycelia. We subsequently identified the sRNAs of T. breve T069 and B. cinerea during the critical period of mycoparasitism using high-throughput sequencing. In ltR1, 45 potential milRNA targets were identified for 243 genes, and 73 milRNAs targeted 733 genes in ltR3. Additionally, to identify potential transboundary miRNAs in T. breve T069, we screened for miRNAs that were exclusively expressed and had precursor structures in the T. breve T069 genome but were absent in the B. cinerea genome. Next, we predicted the target genes of B. cinerea. Our findings showed that 14 potential transboundary milRNAs from T. breve T069 targeted 41 genes in B. cinerea. Notably, cme-MIR164a-p5_1ss17CT can target 15 genes, including Rim15 (BCIN_15g00280), Nop53 (BCIN_12g03770), Skn7 (BCIN_02g08650), and Vel3 (BCIN_03g06410), while ppe-MIR477b-p3_1ss11TC targeted polyketide synthase (BCIN_03g04360, PKS3). The target gene of PC-5p-27397_41 was a non-ribosomal peptide synthetase (BCIN_01g03730, Bcnrps6). PC-3p-0029 (Tri-milR29) targeted chitin synthetase 7. These genes play crucial roles in normal mycelial growth and pathogenicity of B. cinerea. In conclusion, this study highlights the significance of milRNAs in Trichoderma mycoparasitism of B. cinerea. This discovery provides a new strategy for the application of miRNAs in the prevention and treatment of fungal pathogens.


Assuntos
Hypocreales , MicroRNAs , Trichoderma , MicroRNAs/genética , Hypocreales/genética , Botrytis/genética , RNA Fúngico/genética , Trichoderma/genética , Regulação Fúngica da Expressão Gênica
3.
Anal Chim Acta ; 1273: 341528, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423662

RESUMO

Efficient DNA sample preparation from fungi with the rigid cell walls is still critical for successful polymerase chain reaction (PCR), one of the basic platforms in molecular diagnostics of fungi, especially in medical mycology. Common methods that involve different chaotropes to yield DNA samples have found a limited application for fungi. Here we describe a novel procedure for efficient production of permeable fungal cell envelopes with DNA inside as suitable templates for PCR. This procedure is facile, relies on boiling of fungal cells in aqueous solutions of selected chaotropic agents and additives and enables to remove RNA and proteins from PCR template samples. The use of chaotropic solutions containing 7 M urea, 1% sodium dodecyl sulfate (SDS), up to100 mM ammonia and/or 25 mM sodium citrate was the best option to yield highly purified DNA-containing cell envelopes from all fungal strains under study, including clinical Candida and Cryptococcusisolates. After treatment with the selected chaotropic mixtures, the fungal cell walls had undergone loosening and were no longer a barrier to release DNA in PCR as evident from electron microscopy examinations and successful target gene amplifications. Overall, the developed simple, fast, and low-cost approach to produce PCR-suitable templates in the form of DNA encased by permeable cell walls can find application in molecular diagnostics.


Assuntos
Parede Celular , Reação em Cadeia da Polimerase , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , Parede Celular/química
4.
Nat Commun ; 14(1): 4383, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474601

RESUMO

Small RNAs (sRNAs) of the fungal pathogen Botrytis cinerea can enter plant cells and hijack host Argonaute protein 1 (AGO1) to silence host immunity genes. However, the mechanism by which these fungal sRNAs are secreted and enter host cells remains unclear. Here, we demonstrate that B. cinerea utilizes extracellular vesicles (EVs) to secrete Bc-sRNAs, which are then internalized by plant cells through clathrin-mediated endocytosis (CME). The B. cinerea tetraspanin protein, Punchless 1 (BcPLS1), serves as an EV biomarker and plays an essential role in fungal pathogenicity. We observe numerous Arabidopsis clathrin-coated vesicles (CCVs) around B. cinerea infection sites and the colocalization of B. cinerea EV marker BcPLS1 and Arabidopsis CLATHRIN LIGHT CHAIN 1, one of the core components of CCV. Meanwhile, BcPLS1 and the B. cinerea-secreted sRNAs are detected in purified CCVs after infection. Arabidopsis knockout mutants and inducible dominant-negative mutants of key components of the CME pathway exhibit increased resistance to B. cinerea infection. Furthermore, Bc-sRNA loading into Arabidopsis AGO1 and host target gene suppression are attenuated in those CME mutants. Together, our results demonstrate that fungi secrete sRNAs via EVs, which then enter host plant cells mainly through CME.


Assuntos
Arabidopsis , Vesículas Extracelulares , Arabidopsis/microbiologia , RNA Fúngico/genética , Células Vegetais , Endocitose , Clatrina , Doenças das Plantas/microbiologia
5.
RNA Biol ; 20(1): 109-119, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988190

RESUMO

Small RNAs (sRNAs) are short non-coding regulatory RNA sequences that silence the complementary expressive transcripts through an endogenous RNA mediated interference mechanism (RNAi). These sRNAs typically move through plasmodesmata and phloem in plants to support disease resistance, and also through septal pores and vesicles in fungi to act as effector of pathogenicity. Notably, recent reports have shown the occurrence of a bidirectional trafficking of these sRNAs between the host plants and the attacking fungal phytopathogen which have significant implication in the nature of the infection. While the trans-species sRNAs from the pathogen can silence the host mRNAs and inhibit the host immunity genes, the sRNA modules from the host plants can silence the mRNA in the pathogen by impeding the expression of the pathogenicity-related genes. In the present review, we discuss the current state of sRNA trafficking between the plant and the pathogen with special emphasis on the mechanism of cross-kingdom communication which could contribute to the development of pathogen and pest control in future agriculture.


Assuntos
Fungos , Plantas , Pequeno RNA não Traduzido , Agricultura , Interferência de RNA , RNA Fúngico/genética , RNA Mensageiro , Pequeno RNA não Traduzido/genética , Plantas/genética , Plantas/microbiologia , Fungos/genética , Fungos/patogenicidade
6.
Mol Plant Pathol ; 24(6): 570-587, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36917011

RESUMO

The establishment of host-microbe interactions requires molecular communication between both partners, which may involve the mutual transfer of noncoding small RNAs. Previous evidence suggests that this is also true for powdery mildew disease in barley, which is caused by the fungal pathogen Blumeria hordei. However, previous studies lacked spatial resolution regarding the accumulation of small RNAs upon host infection by B. hordei. Here, we analysed site-specific small RNA repertoires in the context of the barley-B. hordei interaction. To this end, we dissected infected leaves into separate fractions representing different sites that are key to the pathogenic process: epiphytic fungal mycelium, infected plant epidermis, isolated haustoria, a vesicle-enriched fraction from infected epidermis, and extracellular vesicles. Unexpectedly, we discovered enrichment of specific 31-33-base 5'-terminal fragments of barley 5.8S ribosomal RNA in extracellular vesicles and infected epidermis, as well as particular B. hordei transfer RNA fragments in haustoria. We describe canonical small RNAs from both the plant host and the fungal pathogen that may confer cross-kingdom RNA interference activity. Interestingly, we found first evidence of phased small interfering RNAs in B. hordei, a feature usually attributed to plants, which may be associated with the posttranscriptional control of fungal coding genes, pseudogenes, and transposable elements. Our data suggest a key and possibly site-specific role for cross-kingdom RNA interference and noncoding RNA fragments in the host-pathogen communication between B. hordei and its host barley.


Assuntos
Ascomicetos , Hordeum , RNA Fúngico/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Hordeum/microbiologia , RNA de Transferência , Interferência de RNA , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
7.
Elife ; 112022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484778

RESUMO

RNA interference is an ancient mechanism with many regulatory roles in eukaryotic genomes, with small RNAs acting as their functional element. While there is a wide array of classes of small-RNA-producing loci, those resulting from stem-loop structures (hairpins) have received profuse attention. Such is the case of microRNAs (miRNAs), which have distinct roles in plants and animals. Fungi also produce small RNAs, and several publications have identified miRNAs and miRNA-like (mi/milRNA) hairpin RNAs in diverse fungal species using deep sequencing technologies. Despite this relevant source of information, relatively little is known about mi/milRNA features in fungi, mostly due to a lack of established criteria for their annotation. To systematically assess mi/milRNA characteristics and annotation confidence, we searched for publications describing mi/milRNA loci and re-assessed the annotations for 41 fungal species. We extracted and normalized the annotation data for 1727 reported mi/milRNA loci and determined their abundance profiles, concluding that less than half of the reported loci passed basic standards used for hairpin RNA discovery. We found that fungal mi/milRNA are generally more similar in size to animal miRNAs and were frequently associated with protein-coding genes. The compiled genomic analyses identified 25 mi/milRNA loci conserved in multiple species. Our pipeline allowed us to build a general hierarchy of locus quality, identifying more than 150 loci with high-quality annotations. We provide a centralized annotation of identified mi/milRNA hairpin RNAs in fungi which will serve as a resource for future research and advance in understanding the characteristics and functions of mi/milRNAs in fungal organisms.


Assuntos
MicroRNAs , RNA Fúngico , Animais , RNA Fúngico/genética , RNA Fúngico/química , Regulação Fúngica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Fungos/genética
8.
Microbiol Spectr ; 10(6): e0021922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36301126

RESUMO

miRNA-like RNAs (milRNAs) have been recognized as sequence-specific regulators of posttranscriptional regulation of gene expression in eukaryotes. However, the functions of hundreds of fungal milRNAs in the biosynthesis of metabolic components are obscure. Sanghuangporus produces diverse bioactive compounds and is widely used in Asian countries. Here, genes encoding two Dicers, four Argonautes, and four RdRPs were identified and characterized in Sanghuangporus vanini. Due to the lack of an efficient gene manipulation system, the efficacy of spray-induced gene silencing (SIGS) was determined in S. vanini, which showed efficient double-stranded RNA (dsRNA) uptake and gene silencing efficiency. SIGS-mediated gene knockdown showed that SVRDRP-3, SVRDRP-4, SVDICER-1, and SVDICER-2 were critical for mycelial biomass, flavonoid, triterpenoid, and polysaccharide production. Illumina deep sequencing was performed to characterize the milRNAs from S. vanini mycelium and fruiting body. A total of 31 milRNAs were identified, out of which, SvmilR10, SvmilR17, and SvmilR33 were Svrdrp-4- and Svdicer-1-dependent milRNAs. Importantly, SIGS-mediated overexpression of SvmilR10 and SvmilR33 resulted in significant changes in the yields of flavonoids, triterpenoids, and polysaccharides. Further analysis showed that these milRNA target genes encoding the retrotransposon-derived protein PEG1 and histone-lysine N-methyltransferase were potentially downregulated in the milRNA overexpressing strain. Our results revealed that S. vanini has high external dsRNA and small RNA uptake efficiency and that milRNAs may play crucial regulatory roles in the biosynthesis of bioactive compounds. IMPORTANCE Fungi can take up environmental RNA that can silence fungal genes with RNA interference, which prompts the development of SIGS. Efficient dsRNA and milRNA uptake in S. vanini, successful dsRNA-targeted gene block, and the increase in intracellular miRNA abundance showed that SIGS technology is an effective and powerful tool for the functional dissection of fungal genes and millRNAs. We found that the RdRP, Dicer, and Argonaute genes are critical for mycelial biomass and bioactive compound production. Our study also demonstrated that overexpressed SVRDRP-4- and SVDICER-1-dependent milRNAs (SvmilR10 and SvmilR33) led to significant changes in the yields of the three active compounds. This study not only provides the first report on SIGS-based gene and milRNA function exploration, but also provides a theoretical platform for exploration of the functions of milRNAs involved in biosynthesis of metabolic compounds in fungi.


Assuntos
Basidiomycota , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Basidiomycota/metabolismo , Interferência de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica
9.
Science ; 375(6584): 1000-1005, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239377

RESUMO

Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent plug-and-play modules in synthetic biology. However, genetic context-including the adjacent transcriptional environment-also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle the effects of sequence and context. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where transcript length was controlled by neighboring transcription. This demonstrates how positional context can be leveraged in synthetic genome engineering.


Assuntos
Genoma Fúngico , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Transcriptoma , Regiões 3' não Traduzidas , Sequência de Bases , Rearranjo Gênico , Variação Genética , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA-Seq , Análise de Sequência de RNA
10.
J Biol Chem ; 298(3): 101657, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131263

RESUMO

A wide range of bacteria possess virulence factors such as aminoacyl-tRNA transferases (ATTs) that are capable of rerouting aminoacyl-transfer RNAs away from protein synthesis to conjugate amino acids onto glycerolipids. We recently showed that, although these pathways were thought to be restricted to bacteria, higher fungi also possess ergosteryl-3ß-O-L-aspartate synthases (ErdSs), which transfer the L-Asp moiety of aspartyl-tRNAAsp onto the 3ß-OH group of ergosterol (Erg), yielding ergosteryl-3ß-O-L-aspartate (Erg-Asp). Here, we report the discovery, in fungi, of a second type of fungal sterol-specific ATTs, namely, ergosteryl-3ß-O-glycine (Erg-Gly) synthase (ErgS). ErgS consists of a freestanding DUF2156 domain encoded by a gene distinct from and paralogous to that of ErdS. We show that the enzyme only uses Gly-tRNAGly produced by an independent glycyl-tRNA synthetase (GlyRS) to transfer glycine onto the 3ß-OH of Erg, producing Erg-Gly. Phylogenomics analysis also show that the Erg-Gly synthesis pathway exists only in Ascomycota, including species of biotechnological interest, and more importantly, in human pathogens, such as Aspergillus fumigatus. The discovery of a second type of Erg-aa not only expands the repertoire of this particular class of fungal lipids but suggests that Erg-aa synthases might constitute a genuine subfamily of lipid-modifying ATTs.


Assuntos
Ascomicetos , Ergosterol , Glicina , Aminoácidos , Ascomicetos/genética , Ascomicetos/metabolismo , Ácido Aspártico , Glicina/biossíntese , Glicina/genética , Glicina/metabolismo , Humanos , RNA Fúngico/genética , RNA Fúngico/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo
11.
Elife ; 112022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34984977

RESUMO

Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions.


Assuntos
RNA Fúngico/genética , RNA não Traduzido/genética , Schizosaccharomyces/genética , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Schizosaccharomyces/metabolismo
12.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055152

RESUMO

As part of a complex network of genome control, long regulatory RNAs exert significant influences on chromatin dynamics. Understanding how this occurs could illuminate new avenues for disease treatment and lead to new hypotheses that would advance gene regulatory research. Recent studies using the model fission yeast Schizosaccharomyces pombe (S. pombe) and powerful parallel sequencing technologies have provided many insights in this area. This review will give an overview of key findings in S. pombe that relate long RNAs to multiple levels of chromatin regulation: histone modifications, gene neighborhood regulation in cis and higher-order chromosomal ordering. Moreover, we discuss parallels recently found in mammals to help bridge the knowledge gap between the study systems.


Assuntos
Cromatina/metabolismo , RNA Longo não Codificante/genética , Schizosaccharomyces/crescimento & desenvolvimento , Código das Histonas , Processamento de Proteína Pós-Traducional , RNA Fúngico/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058356

RESUMO

Pseudouridine (Ψ) is a ubiquitous RNA modification incorporated by pseudouridine synthase (Pus) enzymes into hundreds of noncoding and protein-coding RNA substrates. Here, we determined the contributions of substrate structure and protein sequence to binding and catalysis by pseudouridine synthase 7 (Pus7), one of the principal messenger RNA (mRNA) modifying enzymes. Pus7 is distinct among the eukaryotic Pus proteins because it modifies a wider variety of substrates and shares limited homology with other Pus family members. We solved the crystal structure of Saccharomyces cerevisiae Pus7, detailing the architecture of the eukaryotic-specific insertions thought to be responsible for the expanded substrate scope of Pus7. Additionally, we identified an insertion domain in the protein that fine-tunes Pus7 activity both in vitro and in cells. These data demonstrate that Pus7 preferentially binds substrates possessing the previously identified UGUAR (R = purine) consensus sequence and that RNA secondary structure is not a strong requirement for Pus7-binding. In contrast, the rate constants and extent of Ψ incorporation are more influenced by RNA structure, with Pus7 modifying UGUAR sequences in less-structured contexts more efficiently both in vitro and in cells. Although less-structured substrates were preferred, Pus7 fully modified every transfer RNA, mRNA, and nonnatural RNA containing the consensus recognition sequence that we tested. Our findings suggest that Pus7 is a promiscuous enzyme and lead us to propose that factors beyond inherent enzyme properties (e.g., enzyme localization, RNA structure, and competition with other RNA-binding proteins) largely dictate Pus7 substrate selection.


Assuntos
Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Domínio Catalítico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/química , RNA Fúngico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Estresse Fisiológico , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura , Termodinâmica
14.
Mol Cell ; 82(2): 404-419.e9, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34798057

RESUMO

The epitranscriptome has emerged as a new fundamental layer of control of gene expression. Nevertheless, the determination of the transcriptome-wide occupancy and function of RNA modifications remains challenging. Here we have developed Rho-seq, an integrated pipeline detecting a range of modifications through differential modification-dependent rhodamine labeling. Using Rho-seq, we confirm that the reduction of uridine to dihydrouridine (D) by the Dus reductase enzymes targets tRNAs in E. coli and fission yeast. We find that the D modification is also present on fission yeast mRNAs, particularly those encoding cytoskeleton-related proteins, which is supported by large-scale proteome analyses and ribosome profiling. We show that the α-tubulin encoding mRNA nda2 undergoes Dus3-dependent dihydrouridylation, which affects its translation. The absence of the modification on nda2 mRNA strongly impacts meiotic chromosome segregation, resulting in low gamete viability. Applying Rho-seq to human cells revealed that tubulin mRNA dihydrouridylation is evolutionarily conserved.


Assuntos
Segregação de Cromossomos , Escherichia coli/genética , Meiose , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Schizosaccharomyces/genética , Uridina/metabolismo , Cromossomos Bacterianos , Cromossomos Fúngicos , Cromossomos Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Células HCT116 , Humanos , Oxirredução , RNA Bacteriano/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Análise de Sequência de RNA , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
Cell Rep ; 37(10): 110097, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879269

RESUMO

RNA-DNA hybrids are often associated with genome instability and also function as a cellular regulator in many biological processes. In this study, we show that accumulated RNA-DNA hybrids cause multiple defects in budding yeast meiosis, including decreased sporulation efficiency and spore viability. Further analysis shows that these RNA-DNA hybrid foci colocalize with RPA/Rad51 foci on chromosomes. The efficient formation of RNA-DNA hybrid foci depends on Rad52 and ssDNA ends of meiotic DNA double-strand breaks (DSBs), and their number is correlated with DSB frequency. Interestingly, RNA-DNA hybrid foci and recombination foci show similar dynamics. The excessive accumulation of RNA-DNA hybrids around DSBs competes with Rad51/Dmc1, impairs homolog bias, and decreases crossover and noncrossover recombination. Furthermore, precocious removal of RNA-DNA hybrids by RNase H1 overexpression also impairs meiotic recombination similarly. Taken together, our results demonstrate that RNA-DNA hybrids form at ssDNA ends of DSBs to actively regulate meiotic recombination.


Assuntos
DNA Fúngico/metabolismo , Recombinação Homóloga , Meiose , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , RNA Fúngico/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Cell Rep ; 37(4): 109877, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34706231

RESUMO

Conserved developmentally regulated guanosine triphosphate (GTP)-binding proteins (Drgs) and their binding partner Drg family regulatory proteins (Dfrps) are important for embryonic development, cellular growth control, differentiation, and proliferation. Here, we report that the yeast Drg1/Dfrp1 ortholog Rbg1/Tma46 facilitates translational initiation, elongation, and termination by suppressing prolonged ribosome pausing. Consistent with the genome-wide observations, deletion of Rbg1 exacerbates the growth defect resulting from translation stalling, and Rbg1 stabilizes mRNAs against no-go decay. Furthermore, we provide a cryoelectron microscopy (cryo-EM) structure of the 80S ribosome bound with Rbg1/Tma46 that reveals the molecular interactions responsible for Rbg1/Tma46 function. The Rbg1 subunit binds to the GTPase association center of the ribosome and the A-tRNA, and the N-terminal zinc finger domain of the Tma46 subunit binds to the 40S, establishing an interaction critical for the ribosomal association. Our results answer the fundamental question of how a paused ribosome resumes translation and show that Drg1/Dfrp1 play a critical role in ensuring orderly translation.


Assuntos
Proteínas de Transporte/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Microbiol Spectr ; 9(2): e0104821, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704799

RESUMO

The fungus Nosema bombycis causes significant economic losses via parasitism of an economically important insect. MicroRNAs (miRNAs) play important roles in regulating host and parasite gene expression via mRNA degradation or by inhibiting protein translation. To investigate whether microRNA-like RNAs (milRNAs) regulate N. bombycis pathogenesis and to better understand the regulatory mechanisms underlying infection, we constructed small RNA libraries from N. bombycis hyphae during the schizont proliferation period. Eleven novel milRNAs were determined by RNA sequencing and stem-loop reverse transcriptase PCR (RT-PCR) assays. Moreover, a virulence-associated milRNA, Nb-milR8, was identified as critical for N. bombycis proliferation by binding and downregulating expression of its target gene, BmPEX16, in the host during infection. Silencing of Nb-milR8 or overexpression of the target BmPEX16 gene resulted in increased susceptibility of Bombyx mori to N. bombycis infection. Taken together, these results suggest that Nb-milR8 is an important virulence factor that acts as an effector to suppress host peroxidase metabolism, thereby facilitating N. bombycis proliferation. These results provide important novel insights into interactions between pathogenic fungi and their hosts. IMPORTANCE A thorough understanding of fungal pathogen adaptations is essential for treating fungal infections. Recent studies have suggested that the role of small RNAs expressed in fungal microsporidia genomes are important for elucidating the mechanisms of fungal infections. Here, we report 11 novel microRNA-like RNAs (milRNAs) from the fungal microsporidium Nosema bombycis and identified NB-milRNAs that adaptively regulate N. bombycis proliferation. In addition, we demonstrate that N. bombycis modulates small RNA (sRNA)-mediated infection by encoding an Nb-miR8 that downregulates the expression of the host peroxidase metabolism protein BmPEX16, which is essential for peroxisome membrane biogenesis and peroxisome assembly. These results significantly contribute to our understanding of the pathogenic mechanisms of fungi, and especially microsporidia, while providing important targets for genetical engineering-based treatment of microsporidia.


Assuntos
Bombyx/microbiologia , Proteínas Fúngicas/biossíntese , Proteínas de Membrana/biossíntese , MicroRNAs/genética , Nosema/genética , Peroxidase/metabolismo , Animais , Bombyx/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Proteínas de Membrana/genética , Micoses/patologia , Nosema/crescimento & desenvolvimento , Nosema/patogenicidade , Peroxissomos/metabolismo , RNA Fúngico/genética
18.
J Biol Chem ; 297(5): 101246, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34582893

RESUMO

Proliferating cells coordinate histone and DNA synthesis to maintain correct stoichiometry for chromatin assembly. Histone mRNA levels must be repressed when DNA replication is inhibited to prevent toxicity and genome instability due to free non-chromatinized histone proteins. In mammalian cells, replication stress triggers degradation of histone mRNAs, but it is unclear if this mechanism is conserved from other species. The aim of this study was to identify the histone mRNA decay pathway in the yeast Saccharomyces cerevisiae and determine the mechanism by which DNA replication stress represses histone mRNAs. Using reverse transcription-quantitative PCR and chromatin immunoprecipitation-quantitative PCR, we show here that histone mRNAs can be degraded by both 5' → 3' and 3' → 5' pathways; however, replication stress does not trigger decay of histone mRNA in yeast. Rather, replication stress inhibits transcription of histone genes by removing the histone gene-specific transcription factors Spt10p and Spt21p from histone promoters, leading to disassembly of the preinitiation complexes and eviction of RNA Pol II from histone genes by a mechanism facilitated by checkpoint kinase Rad53p and histone chaperone Asf1p. In contrast, replication stress does not remove SCB-binding factor transcription complex, another activator of histone genes, from the histone promoters, suggesting that Spt10p and Spt21p have unique roles in the transcriptional downregulation of histone genes during replication stress. Together, our data show that, unlike in mammalian cells, replication stress in yeast does not trigger decay of histone mRNAs but inhibits histone transcription.


Assuntos
Replicação do DNA , DNA Fúngico , Histona Acetiltransferases , Histonas , Regiões Promotoras Genéticas , RNA Fúngico , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Transcrição Gênica , DNA Fúngico/biossíntese , DNA Fúngico/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/biossíntese , Histonas/genética , RNA Fúngico/biossíntese , RNA Fúngico/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Cell Rep ; 36(9): 109633, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469733

RESUMO

In this work, we show that Not4 and Not5 from the Ccr4-Not complex modulate translation elongation dynamics and change ribosome A-site dwelling occupancy in a codon-dependent fashion. These codon-specific changes in not5Δ cells are very robust and independent of codon position within the mRNA, the overall mRNA codon composition, or changes of mRNA expression levels. They inversely correlate with codon-specific changes in cells depleted for eIF5A and positively correlate with those in cells depleted for ribosome-recycling factor Rli1. Not5 resides in punctate loci, co-purifies with ribosomes and Rli1, but not with eIF5A, and limits mRNA solubility. Overexpression of wild-type or non-complementing Rli1 and loss of Rps7A ubiquitination enable Not4 E3 ligase-dependent translation of polyarginine stretches. We propose that Not4 and Not5 modulate translation elongation dynamics to produce a soluble proteome by Rps7A ubiquitination, dynamic condensates that limit mRNA solubility and exclude eIF5A, and a moonlighting function of Rli1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fator de Iniciação 5 em Eucariotos/metabolismo , Elongação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Fator de Iniciação 5 em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Fatores de Iniciação de Peptídeos/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Subunidades Ribossômicas Menores/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445460

RESUMO

Yeast phenotypes associated with the lack of wobble uridine (U34) modifications in tRNA were shown to be modulated by an allelic variation of SSD1, a gene encoding an mRNA-binding protein. We demonstrate that phenotypes caused by the loss of Deg1-dependent tRNA pseudouridylation are similarly affected by SSD1 allelic status. Temperature sensitivity and protein aggregation are elevated in deg1 mutants and further increased in the presence of the ssd1-d allele, which encodes a truncated form of Ssd1. In addition, chronological lifespan is reduced in a deg1 ssd1-d mutant, and the negative genetic interactions of the U34 modifier genes ELP3 and URM1 with DEG1 are aggravated by ssd1-d. A loss of function mutation in SSD1, ELP3, and DEG1 induces pleiotropic and overlapping phenotypes, including sensitivity against target of rapamycin (TOR) inhibitor drug and cell wall stress by calcofluor white. Additivity in ssd1 deg1 double mutant phenotypes suggests independent roles of Ssd1 and tRNA modifications in TOR signaling and cell wall integrity. However, other tRNA modification defects cause growth and drug sensitivity phenotypes, which are not further intensified in tandem with ssd1-d. Thus, we observed a modification-specific rather than general effect of SSD1 status on phenotypic variation in tRNA modification mutants. Our results highlight how the cellular consequences of tRNA modification loss can be influenced by protein targeting specific mRNAs.


Assuntos
Transferases Intramoleculares/deficiência , Processamento Pós-Transcricional do RNA/genética , RNA Fúngico , RNA de Transferência , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Variação Biológica da População , Transferases Intramoleculares/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...